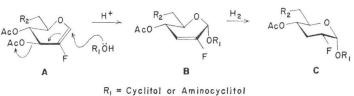
SYNTHESIS OF α-LINKED 2',3'-DIDEOXY-2'-FLUORO-PSEUDO-DISACCHARIDES RELATED TO AMINOCYCLITOL-GLYCOSIDE ANTIBIOTICS

Sir:

It has recently been shown¹⁾ that the removal of the 2'-amino or 2'-hydroxyl groups in the aminocyclitol-glycoside antibiotics does not seriously alter the effectiveness of the natural products. Obviously the 2'-deoxy analogues must be less stable than the parent aminocyclitolglycoside antibiotics; this would reduce their potential clinical use.

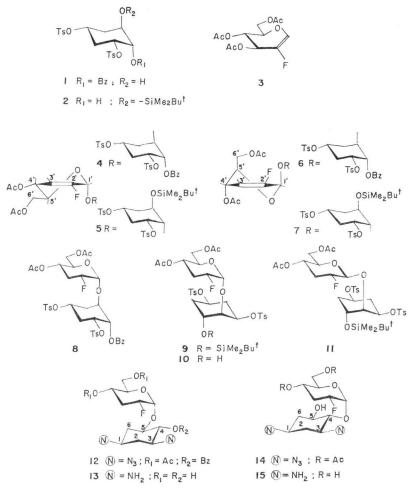

We have therefore synthesized and report here the stereocontrolled preparation of α -linked 2', 3'-dideoxy-2'-fluoro-cyclitol and -aminocyclitol pseudo-disaccharides related to the crucial repeating units of aminocyclitol-glycoside antibiotics.

The sequence used here employs an acidcatalysed addition of 2-deoxy-2-fluoro-glycal²⁾ (A) to an alcohol (scheme), followed by regiospecific hydrogenation from the β -face of the resultant α -linked unsaturated glycoside (B), leading to 2',3'-dideoxy-2'-fluoro α -glycoside (C), having the desired D-*ribo*-configuration. As far as we are aware, such 2',3'-dideoxy-2'-fluoropseudo-saccharides have not been reported in the literature to date. 86% yield. The major component 4 (58%), mp 198~199°C, $[\alpha]_{\rm D}$ +31° (*c* 1.09, CHCl₃) (¹H nmr; J_{1'~3'} = 0.5 Hz, J_{4'~5'} = 9Hz) was isolated by a single crystallisation from alcohol. The minor, amorphous product 6 (28%) showed; $[\alpha]_{\rm D}$ +23° (*c* 1.8, CHCl₃) (¹H nmr, J_{1'~3'} = 0.5 Hz, J_{4'~5'} = 3 Hz).

The α -glycoside **4** was regiospecifically hydrogenated in quantitative yield, in ethyl acetate in the presence of a 10% palladium on carbon catalyst and a trace of glacial acetic acid, to compound **8**, mp 160~162°C; $[\alpha]_D + 41^\circ$ (*c* 1.37, CHCl₃). Reduction occurred exclusively from the β -face of the α -glycoside **4**. Azidolysis of **8**, using sodium azide in N, N-dimethyl-formamide at 110°C for 1 hour, gave a mixture of three products (78%), which were separated by chromatography on silica gel. The major component was identified as the diazide **12**, $[\alpha]_D + 62^\circ$ (*c* 2, CHCl₃) (¹H nmr: $J_{1'\sim 2'} = 4$ Hz, $J_{2'\sim 3'e} = 5$ Hz, $J_{2'\sim 3'a} = 11$ Hz, $J_{4'\sim 5'} = 11$ Hz).

The minor, unsaturated components, formed by elimination of toluene-p-sulphonic acid in 8, were not examined further.

De-esterification of **12**, followed by reduction [Pt; methanol - water (1 : 1)], gave 5-O-(2',3'-dideoxy-2'-fluoro- α -D-*ribo*-hexopyranose)-2,6-dideoxystreptamine **13**, isolated as its crystalline sulphate, mp 237~239°C, $[\alpha]_{\rm D}$ =+60° (*c* 1.24, H₂O).


Scheme.

 $R_1 = Cychilof or Aminocycli$ $R_2 = OAc . OTs$

A similar approach has been reported recently^{3,4)} for the synthesis of α -linked 3'-deoxycyclitol and -aminocyclitol glycosides, thus illustrating the versatility of our synthetic scheme. Acid catalysed rearrangement of cyclic vinyl ether systems (glycals) leading to unsaturated glycosides has been extensively studied⁵⁾.

Addition of compound 3 to a solution of $1^{8,4}$ (1 equiv.) in dichloroethane containing a catalytic amount of boron trifluoride-etherate at -15°C, over 5 hours, gave a mixture of 2 products in Similarly, in the natural 4-O series, the reaction of **3** with the compound $2^{3,4)}$ resulted in a mixture of the stereoisomers **5** and **7**, according* to ¹H and ¹³C nmr data; reduction of the olefins (*in situ*) furnished the oily major compound **9** (63%), $[\alpha]_{\rm D} = +80^{\circ}$ (c 1.1, CHCl₃) and the syrupy minor β -glycoside **11**, $[\alpha]_{\rm D} = +27^{\circ}$ (c 2, CHCl₃). Treatment of the α -glycoside **9** with tetra-*n*butyl-ammonium fluoride in tetrahydrofuran afforded the oily **10** in quantitative yield, $[\alpha]_{\rm D}$ + 62.5° (c 1, CHCl₃).

^{*} Satisfactory mass and ¹³C nmr spectra were obtained for all new compounds.

 $Ts = p - MeC_6H_4SO_2 -$; Ac = MeCO - ; Bz = PhCO -

Azidolysis of **10** yielded the syrupy **14**, $[\alpha]_{\rm D}$ +90° (*c* 0.93, CHCl₃). ¹H nmr: J_{1'~2'}=3.7 Hz, J_{2'~3'}=5.6 Hz, J_{2'~3'}=12.5 Hz, J_{4'~5'}=8.7 Hz). Deacetylation of the latter, followed by catalytic hydrogenation gave the pseudo-disaccharide, 4-O-(2',3'-dideoxy-2'-fluoro- α -D-*ribo*-hexopyranosyl)-2,6-dideoxy-streptamine **15**, readily characterized as its sulphate, mp 206~208°C, $[\alpha]_{\rm D}$ +43°, (*c* 1, H₂O).

We anticipate that these products will be valuable precursors for the total and mutasynthesis^{6,7)} of 2',3'-dideoxy-2'-fluoro aminocyclitol glycoside antibiotics.

Acknowledgement

The authors gratefully acknowledge financial support of this work from Institut National de la Santé et de la Recherche Médicale (INSERM) (Grant n°77.4.205.3).

GEORGE VASS Alain Rolland Jeanine Cleophax Daniel Mercier Béatrice Quiclet Stephan D. Gero

Institut de Chimie des Substances Naturelles, CNRS 91190 Gif sur Yvette, France

(Received April 16, 1979)

References

 WRIGHT, J. J. & P. LEE: Synthesis and conformational properties of novel 2'-unsubstituted aminoglycoside antibiotics of the gentamicinsisomicin class. Abstracts IXth International Symposium on Carbohydrate Chemistry, London, p. 151, April, 1978

- ADAMSON, J.; A. B. FOSTER & J. H. WESTWOOD: 2-Deoxy-2,2-difluoro-D-arabino-hexose ("2,2-difluoroglucose). Carbohyd. Res. 18: 345~347, 1971
- GERO, S. D.; J. CLEOPHAX, A. ROLLAND, A. SEPULCHRE, D. MERCIER, L. CASTELLANOS & N. ROLLAND: Total synthesis of α-linked cyclitol and aminocyclitol glycosides by acid catalysed procedures. Abstracts IXth International Symposium on Carbohydrate Chemistry. London, p. 81. April, 1978
- 4) CLEOPHAX, J.; DO KHAC DUC, J. M. DELAUMENY,

S. D. GERO & A. ROLLAND: Synthesis of α -linked 3'-deoxy-cyclitol and amino-cyclitol glucosides. J. Chem. Soc., Chem. Comm. 1978: 771~773, 1978

- 5) FERRIER, R. J.: Unsaturated sugars. Adv. Carbohyd. Chem. Biochem. 24: 199~266, 1969
- RINEHART, Jr., K. L.: Mutasynthesis of new antibiotics. Pure & Appl. Chem. 49: 1361~ 1384, 1977
- 7) TAKEDA, K.; A. KINUMAKI, T. FURUMAI, T. YAMAGUCHI, S. OHSHIMA & Y. ITO: Mutational biosynthesis of butirosin analogs. J. Antibiotics 31: 247~249, 1978